A snapshot of Cell studio taken during a run. An activated antigen-presenting cell (APC, green) is seen interacting with a naïve T-cell (purple). Credit: AIP Bioengineering.

Researchers at the Tel Aviv University, Israel, Dortmund University, Germany, and Arizona State University, U.S., have collaborated to engineer an interactive 3-D simulation in silico that can mimic in vitro, or in vivo experiments as seen under the microscope using interactive game engines. The novel platform, known as Cell Studio, can simulate an organic microenvironment with biological and biophysical rules at the cellular level. Several biological scenarios can be simulated, including a 2-D or 3-D spatial patch of tissue or cell culture, cell mitosis, cell differentiation and apoptosis. This work was recently published in AIP Bioengineering.

While the platform is aimed at biologists, biophysicists and researchers in computational biology and systems biology, Cell Studio does not require prior-training in coding; facilitating intuitive general use. The platform is available for download at www.cellstudio.info (currently compatible with Windows OS), initially developed by Liberman et al., to engineer a hybrid, cellular-level platform to model and simulate immunological processes with a user-friendly, graphical user interface (GUI). Researchers and educators can test a hypothesis prior to conducting a real experiment by simulating biological scenarios on the platform. Cell Studio is deployed via client-server architecture using the Unity 3-D (Unity Technologies) game engine at the client side and a scalable C++ algorithm on the side of the server. The use of game engines for work outside game development, with applications in architecture and medicine, is known as "serious games."

Read full article